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1 Introduction

The aim of this paper is to explore in detail the second order linear ordinary
differential equation with real periodic coefficients, also known by the name
Hill’s equation, with emphasis on stability and instability intervals and the
differential operator theory connected with this problematic. These equations
are used as a model in solid state physics. It is our aim to get this topic
closer and explain it to a final year or master level mathematics student with
previous knowledge of differential equation theory and operator theory. So
some previous knowledge from courses in linear analysis, differential equation
theory, functional analysis and integration and measure is required. Let us
now begin with introducing some necessary notions and theory. This part of
the paper is mainly going to concentrate on giving the necessary knowledge
to use as reference in the latter sections of this paper, and not concentrate
too much on the proofs of the results.

1.1 Floquet’s theory

Let us firstly consider the known general second order differential equation

a0(x)y
′′(x) + a1(x)y

′(x) + a2(x)y(x) = 0 (1.1)

where the coefficients as(x) (s = 0, 1, 2) are complex-valued, piecewise con-
tinuous and periodic, all with period a, where a is a non-zero real constant.
It is hence clear that if ψ(x) is a solution of (1.1), then so is ψ(x+ a).

Theorem 1.1 There exist a non-zero constant ρ and a non-trivial solution
ψ(x) of ( 1.1) such that

ψ(x+ a) = ρψ(x) (1.2)

holds. 1

Now let us extend this in the following theorem.

Theorem 1.2 There are linearly independent solutions ψ1(x) and ψ2(x) of
(1.1) such that either

ψ1(x) = em1xp1(x), ψ2(x) = em2xp2(x),

where m1 and m2 are constants, not always distinct, and p1(x) and p2(x)
are periodic with period a; or

1 Proof of this theorem can be found in Eastham[3], section 1.1
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ψ1(x) = emxp1(x), ψ2(x) = emx (xp1(x) + p2(x)) ,

where m is a constant and p1(x) and p2(x) are periodic with period a. 2

The first part of the theorem occurs when there are two linearly inde-
pendent solutions of (1.1), such that (1.2) holds with either different or same
values of ρ, while the second part occurs when there is only one such solution.
The solutions ρ1 and ρ2, whether distinct or not, are called the characteristic
multipliers of (1.1), and m1 and m2 from Theorem (1.2) are called the char-
acteristic exponents of (1.1). The above results and their proofs are known
as the Floquet theory after G. Floquet.

1.2 Hill’s equation

Now we finally come to the Hill’s equation, and in this part we explore its
properties. The name of Hill’s equation is given to the equation

{P (x)y′(x)}′ +Q(x)y(x) = 0 (1.3)

where P (x) and Q(x) are real valued and have period a. We also assume that
P (x) is continuous and nowhere zero and that P ′(x) and Q(x) are piecewise
continuous. Clearly, this equation is a special case of (1.1) and it is named
after G.W. Hill 3. The Hill’s equation (1.3) is the equation mostly covered in
this paper, so the information in this section is crucial for the continuation
of our work.
We now again look at the two solutions ψ1(x) and ψ2(x) from theorem (1.2),
but now we use them on equation (1.3). Let φ1(x) and φ2(x) be the linearly
independent solutions of (1.1), which satisfy the conditions

φ1(0) = 1, φ1
′(0) = 0; φ2(0) = 0, φ2

′(0) = 1. (1.4)

By the proof of Theorem (1.1), we have that the characteristic multipliers
ρ1 and ρ2 in the case of Hill’s equation are solutions of the quadratic equation

ρ2 − {φ1(a) + φ2
′(a)}ρ+ 1 = 0, (1.5)

and hence we have that the characteristic multipliers satisfy

ρ1ρ2 = 1. (1.6)

2 Proof of this theorem can be found in Eastham[3], section 1.1
3 Go to Section 1.4 for more information on Hill
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The solutions φ1(x) and φ2(x) of (1.3) which satisfy the boundary condi-
tions (1.4) are real valued, by definition of Hill’s equation.

Definition 1.3 The real number D defined by

D = φ1(a) + φ2
′(a) (1.7)

is called the discriminant of (1.3).

There are five cases we should consider in finding ψ1(x) and ψ2(x).

1. D > 2. Then

ψ1(x) = emxp1(x), ψ2(x) = e−mxp2(x),

where p1(x) and p2(x) have period a and m is a non-zero real number,
by the first part of Theorem (1.2) 4.

2. D < −2. Here the situation is the same as in the first case, only m
must be replaced by m+ πi

a
.

3. −2 < D < 2. By (1.5) ρ1 and ρ2 are non-real and distinct. Hence by
(1.6), and by the fact they are complex conjugates, there exists a real
number α with 0 < aα < π such that

eiaα = ρ1, e−iaα = ρ2

Then, by Theorem (1.2)

ψ1(x) = eiαxp1(x), ψ2(x) = e−iαxp2(x)

where p1(x) and p2(x) have period a.

4. D = 2. Now we have to decide which part of (1.2) we must apply,
because ρ1 = ρ2 = 1, so we have to consider two cases.

(a) φ2(a) = φ′
1(a) = 0. A simple calculation and a manipulation of

the Wronskian 5 of the matrix determined by φ1 and φ2, yields

ψ1(x) = p1(x), ψ2(x) = p2(x)

where p1(x) and p2(x) have period a. All solutions of (1.3) have
period a in this case.

4 For detailed proofs of all these five results, refer to Eastham [3], Section 1.2
5For the Liouville’s formula for the Wronskian of two solutions of (1.1), refer to East-

ham [2], section 2.3, pages 32-4
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(b) φ2(a) and φ
′
1(a) are not both zero. Here

ψ1(x) = p1(x), ψ2(x) = xp1(x) + p2(x)

where p1(x) and p2(x) have period a.

5. D = −2. Now ρ1 = ρ2 = −1, and again as in the previous part we
have to consider two cases, depending on the part of Theorem (1.2).

(a) φ2(a) = φ′
1(a) = 0. Doing similar manipulations to the previous

part, we get that

ψ1(x) = e
πix

a p1(x), ψ2(x) = e
πix

a p2(x)

where p1(x) and p2(x) have period a. In this case all solutions of
(1.3) satisfy

ψ(x+ a) = −ψ(x)

Let us at this point also note that all functions that satisfy the
above conditions are said to be semi-periodic with semi-period a.

(b) φ2(a) and φ
′
1(a) are not both zero. Here

ψ1(x) = P1(x), ψ2(x) = xP1(x) + P2(x)

where Pk(x) = e
πix

a pk(x), (k = 1, 2). So obviously, as above, Pk(x)
are also semi-periodic.

6. D non real. This is a special case that we will need later on, and D is
still defined like in (1.7), only now takes complex values. In this case ρ1
and ρ2 are non-real and distinct, and they cannot have modulus unity,
because then D would not have complex value, so there is a non-real
number m with the property that re m 6= 0, such that

eam = ρ1 e−am = ρ2

So we obtain that

ψ1(x) = emxp1(x), ψ2(x) = e−mxp2(x).
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1.3 Boundedness and periodicity of solutions

We come now to the final part of this introductory section, where we are going
to briefly look at the properties of solutions of the Hill’s equation (1.3), with
emphasis on boundedness and periodicity of solutions. Again we shall not
dwell on it for too long, so for more in depth information, again please refer
[3], section 1.3, because most of the proofs are omitted in this part. Now let
us go through some theorems and definitions necessary for latter work.

Theorem 1.4 1. If |D| > 2, all non-trivial solutions of (1.3) are un-
bounded in (−∞,∞).

2. If |D| < 2, all solutions of (1.3) are bounded in (−∞,∞).

This result clearly follows from the cases 1-5 of the value of the discrimi-
nant in section 1.2.

Definition 1.5 The equation (1.3) is said to be

• unstable if all non-trivial solutions are unbounded in (−∞,∞).

• conditionally stable if there is a non-trivial solution which is bounded
in (−∞,∞).

• stable if all solutions are bounded in (−∞,∞).

By Theorem (1.4), (1.3) is unstable if |D| > 2, and stable if |D| < 2.
Periodic and semi-periodic functions are bounded in (−∞,∞), so from cases
4 and 5 from section 1.2, we get the following theorem.

Theorem 1.6 The equation (1.3) has non-trivial solutions with period a if
and only if D = 2, and with semi-period a if and only if D = −2. Moreover,
all solutions of (1.3) have period a or semi-period a if and only if φ2(a) =
φ1

′(a) = 0.

With that we finish our preliminary results, which are necessary for the
next section of the paper.

1.4 Additional information

At the end of each chapter, we are going to have some additional information
concerning the topic covered, which is perhaps not of our direct interest, but
interesting and imortant all the same. Here we give the biography of Hill,
considering the fact that we mostly cover the equation named after him, a
very important mathematician. The source of all biographies in this paper
is http://www-history.mcs.st-and.ac.uk/ history/ .
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Figure 1: George William Hill (1838-1914)

1.4.1 Hill’s Biography

George William Hill (Figure 1) was born on the 3rd of March 1838 in New
York, USA and died on the 16th of April 1914 in West Nyack, New York,
USA. After graduating from school he studied at Rutgers University gradu-
ating in 1859. The following year he began his study of the lunar theory of
Delaunay and Hansen. Hill was the first to use infinite determinants to study
the orbit of the Moon (1877). His Researches in Lunar Theory appeared in
1878 in the new American Journal of Mathematics. This publication contains
important new ideas on the three-body problem. He also introduced infinite
determinants and other methods to give increased accuracy to his results.
Newcomb persuaded Hill to develop a theory of the orbits of Jupiter and
Saturn and Hill’s work is a major contribution to mathematical astronomy.
Hill’s most important work dealt with the gravitational effects of the planets
on the Moon’s orbit so in this work he was considering the 4-body problem.
Although he must be considered a mathematician, his mathematics was en-
tirely based on that necessary to solve his orbits problems. He had no interest
in any modern developments in other areas of mathematics. From 1898 until
1901 Hill lectured at Columbia University. Hill became a Fellow of the Royal
Society (1902) receiving its Copley Medal in 1909. He was president of the
American Mathematical Society from 1894 to 1896. He won the Damoiseau
Prize from the Institut de France in 1898, was elected to the Royal Society of
Edinburgh in 1908, elected to the academies of Belgium (1909), Christiania
(1910), Sweden (1913) and others.
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2 Stability and Instability Intervals

Now we come to a part of the paper which is of more interest to us in our
research. As we can see, in this part we deal with stability and instability
intervals, and how they influence our problematic. We start by extending
the definitions of the previous introductory section to a more specific case.

2.1 Extending the previous information

We are still looking at Hill’s equation (1.3), but in a slightly more particular
form, where Q(x) now has a parameter λ, such that

Q(x) = λs(x)− q(x)

Here s(x) and q(x) are piecewise continuous with period a and s(x) is bounded
from below in the sense that there exists a constant s > 0, such that s(x) ≥ s.
Also, if we substitute P (x) with p(x), (1.3) now becomes

((p(x)y′(x))
′
+ (λs(x)− q(x)) y(x) = 0 (2.1)

In general, if the functions in the differential equation not only depend
upon the variable x and y(x), but also upon a real or complex parameter
λ, then the functions φi(x) which form the solution will also depend upon
λ. So in our case, we write φ1(x, λ) and φ2(x, λ) for the solutions of our
equation (2.1) which satisfy the initial conditions (1.4) 6. So now we define,
corresponding to Definition (1.7) the discriminant

D(λ) = φ1(a, λ) + φ2
′(a, λ) (2.2)

Since for all λ, φ1(x, λ) and φ2(x, λ) and their derivatives with respect
to x are analytic functions for fixed x, then by definition (2.2) D(λ) is an
analytic function of λ. Since D(λ) is a continuous function of λ, the values
of λ for which |D(λ)| < 2 form an open set on the real λ − axis. Since
this set can be represented as a union of a countable collection of disjoint
open intervals, then based on the results of Theorem (1.4), part (2), we can
see that (2.1) is stable when λ is in these intervals. Similarly, when λ is
in the intervals in which |D(λ)| > 2, then (2.1) is unstable. Hence, we can
formulate the following definition.

Definition 2.1 • The above described intervals which form the set of
values of λ for which |D(λ)| < 2 are called the stability intervals of
(2.1).

6 Refer to Eastham [2], section 1.7, page 17
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• The intervals which form the set of values of λ for which |D(λ)| > 2
are called the instability intervals of (2.1).

• The intervals which are formed by the closures of the stability intervals
are called conditional stability intervals of (2.1) 7.

Note that if λ is complex, then (2.1) has always unstable solutions, and at
the endpoints of these intervals the solutions of (2.1) are in general unstable
8.

2.2 The eigenvalue problems

We come now to one of the most important parts of this paper, which covers
the periodic and semi-periodic eigenvalue problems, which are one of the basic
and most important problems related to (2.1). Most of this theory is heavily
connected and crucial to the latter sections, especially the one related to
D(λ). We are going to be dealing here with two eigenvalue problems related
to (2.1) and the interval [0, a], and λ is considered as an eigenvalue parameter.
Let us now tackle these two problems. But first, because they are both self
adjoint eigenvalue problems, let us first define these in general.

Definition 2.2 Let L be a second order liner differential operator

L = a0(x)
d2

dx2
+ a1(x)

d

dx
+ a2(x)

where x lies in a bounded closed interval [0, a], each ar(x) is continuous
in [0, a] and a0(x) 6= 0 in [0, a], and let aij and bij (1 ≤ i, j ≤ 2) be con-
stants. Then the problem of determining a function y(x) which satisfies the
differential equation

Ly(x) = λy(x)

in [0, a], where λ is a complex parameter, and the two conditions

a11y(a) + a12y
′(a) + b11y(b) + b12y

′(b) = 0 (2.3)

a21y(a) + a22y
′(a) + b21y(b) + b22y

′(b) = 0 (2.4)

is called an eigenvalue problem. This problem is said to be self-adjoint if
the relation

7 These occur when |D(λ)| ≤ 2
8 Refer to Magnus [5], section 2.1, page 12
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∫ a

0

f2(x)Lf1(x)dx =

∫ a

0

f1(x)Lf2(x)dx

holds for all functions f1(x) and f2(x) in C
(2)[0, a] which satisfy the above

boundary conditions.

Let us now describe the two eigenvalues problems in detail.

1. The periodic eigenvalue problem. This problem consists of the Hill
equation (2.1), which is taken to hold in [0, a], and we also have the
periodic boundary conditions

y(a) = y(0), y′(a) = y′(0) (2.5)

This problem is a self-adjoint problem. We also know that the eigenval-
ues of a self-adjoint eigenvalue problem are real, so we have no problem
with the complexity of λ 9. So, we deduce that the eigenvalues form a
countable set with no finite limit points, and we do this in the way of
constructing the Green’s function and defining a compact symmetric
linear operator in an inner-product space 10. The inner - product space
we are dealing with here is that of continuous functions on [0, a] with
the inner product

< f1, f2 >=

∫ a

0

f1(x)f2(x)s(x)dx

We shall denote the eigenfunctions by ψn(x) and the eigenvalues by λn
where n = 0, 1, . . . and the sequence of eigenvalues is non-decreasing
and λn → ∞ as n → ∞. We choose ψn(x) to be real valued and to
form an orthonormal set over [0, a] with weight function s(x). So we
have

∫ a

0

ψm(x)ψn(x)s(x)dx =

{

1 if m = n
0 if m 6= n

(2.6)

By (2.5), we can extend ψn(x) to the whole (−∞,∞) as continuously
differentiable functions with period a. Hence the λn are the values of
λ for which (2.1) has a non-trivial solution with period a.

9 Refer to Eastham [2], Chapters 5.1-5.3, pages 84-91 for more information on self-
adjoint problems

10 More information on this in the section (2.5)
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2. The semi-periodic eigenvalue problem. This problem consists of the
Hill equation (2.1), which is taken to hold in [0, a], and we also have
the semi-periodic boundary conditions

y(a) = −y(0), y′(a) = −y′(0) (2.7)

It is also a self-adjoint problem, but this time we shall denote the
eigenfunctions by ξn(x) and the eigenvalues by µn(n = 0, 1, . . .). Again
the sequence of eigenvalues is non-increasing and µn → ∞ as n → ∞.
And as before, but now by (2.7) we can extend ξn(x) to the whole
(−∞,∞) as continuously differentiable functions with semi-period a.

From case (4) from the section 1.2 in the case of periodic eigenvalue
problem we can deduce that λn are the zeros of the function D(λ) − 2 and
that a given eigenvalue λn is a double eigenvalue if and only if

φ2(a, λn) = φ′
1(a, λn) = 0

A similar result follows from case (5) from section 1.2 for µn, only this
time the eigenvalues are the zeros of the function D(λ) + 2.
From now on, let F denote the set of all complex-valued functions f(x) which
are continuous in [0, a] and have a piecewise continuous derivative in [0, a].
Let us now define the Dirichlet integral.

Definition 2.3 Let f(x) and g(x) be in F . Then the Dirichlet integral
J(f, g) is defined to be

J(f, g) =

∫ a

0

(

p(x)f ′(x)g′(x) + q(x)f(x)g(x)
)

dx (2.8)

If f(x) and g(x) satisfy the boundary conditions (2.5) and if g(x) = ψn(x),
we get that

J(f, ψn) = λnfn (2.9)

where fn denotes the Fourier coefficient
∫ a

0
f(x)ψn(x)s(x)dx, where we

have used the fact that ψn(x) satisfies (2.1) with λ = λn. From equation
(2.6) in the periodic eigenvalue problem, we can now deduce that in this case

J(ψm, ψn) =

{

λn if m = n
0 if m 6= n

(2.10)

Now we come to two theorems which will finally take all of the information
we have been covering in this section and give us results we can apply to
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concrete examples. The first one gives us a relation between the λn and the
Dirichlet integral, in terms of an inequality.

Theorem 2.4 Let f(x) be in F and let it satisfy the boundary conditions
(2.5). Then with the Fourier coefficients fn defined as above, we have that

∞
∑

n=0

λn|fn|2 ≤ J(f, f). (2.11)

11

The next theorem is the last and crowning theorem of this subsection.
Here ’a.e.’ denotes ’almost everywhere’. In general the term is related to
piecewise-continuous functions.

Theorem 2.5 Let λ1,n(n ≥ o) denote the eigenvalues in the periodic problem
over [0, a] denote the eigenvalues in the periodic problem over the interval
[0, a]. In the problem we replace p(x), q(x) and s(x) by p1(x), q1(x) and
s1(x) respectively, where

p1(x) ≥ p(x), q1(x) ≥ q(x), s1(x) ≤ s(x) (2.12)

Then
(i) if s1(x) = s(x) a.e. we have λ1,n ≥ λn for all n;

(ii) otherwise, we have λ1,n ≥ λn provided n is such that λn ≥ 0.

Proof. Let ψ1,n denote the eigenfunction corresponding to the eigenvalue
λ1,n and let J1(f, g) denote the Dirichlet integral (2.8) but with p(x) and q(x)
replaced by p1(x) and q1(x). By (2.12) we have that

J1(f, f) ≥ J(f, f) (2.13)

Here we prove the theorem for the case 0. So now we consider f(x) =
ψ1,0(x). Then by theorem (2.5) we have that

λ1,0 = J1(ψ1,0, ψ1,0) ≥ J(ψ1,0, ψ1,0) ≥ λ0

∫ a

0

ψ2
1,0(x)s(x)dx (2.14)

Now by (2.12) we get

∫ a

0

ψ2
1,0(x)s(x)dx ≥

∫ a

0

ψ2
1,0(x)s1(x)dx = 1

11For proof of this theorem, please refer to [3], section 2.2, page 22
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Here equality holds in the case (i) of the theorem, while in the second
part of the theorem we have strict inequality. Hence, λ1,0 ≥ λ0 in the first
case, but it only gives λ1,0 ≥ λ0 in the second case if λ0 ≥ 0. This proves the
theorem for n = 0. 12.

Now finally we can use all this information for showing examples in which
we can actually solve (2.1) explicitly and λn and µn can be determined.

Example 2.6 p(x) = s(x) = 1, q(x) = 0. This is an example where (2.1) is
reduced to

y′′(x) + λy(x) = 0,

a well - known equation. We can show that we have λ0 = 0, and for
m ≥ 0

λ2m+1 = λ2m+2 = 4 (m+ 1)2
π2

a2

µ2m = µ2m+1 = (2m+ 1)2
π2

a2

Example 2.7 p(x) = 1, q(x) = 0

s(x) =

{

1 for
(

−1
2
a < x ≤ 0

)

9 for
(

0 < x ≤ −1
2
a
)

In this example we just state the final results 13. The results for the
periodic eigenvalue problem are

λ4m+1 = 4

(

mπ +
1

2
α

)2

/a2, λ4m+2 = 4

(

(m+ 1)π +
1

2
α

)2

/a2,

λ4m+3 = λ4m+4 = 4(m+ 1)2π2/a2

where α = cos−1
(

7
8

)

and 0 < α < 1
2
π.

On the other hand, the solution for the semi-periodic eigenvalues problem
is

µ4m = 4

(

mπ +
1

2
β

)2

/a2, µ4m+1 = 4

(

mπ +
1

2
γ

)2

/a2,

µ4m+2 = 4

(

(m+ 1)π − 1

2
γ

)2

/a2, µ4m+3 = 4

(

(m+ 1)π − 1

2
β

)2

/a2,

where β = cos−1
(

1+
√
33

16

)

and γ = cos−1
(

1−
√
33

16

)

and 0 < β < γ < π.

12 For the rest of the proof please see [3], section 2.2, pages 23-25
13For a full solution look [3], page 25-26
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2.3 The discriminant function D(λ)

In this section we are going to examine more deeply the discriminant function
D(λ), using now the knowledge we acquired in the previous section concern-
ing the existence of eigenvalues λn and µn in the periodic and semi-periodic
eigenvalue problems. The result that follows gives us much more insight into
this problematic.

Theorem 2.8 (i) The numbers λn and µn occur in the order

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < . . . (2.15)

(ii) In the intervals [λ2m, µ2m], D(λ) decreases from 2 to −2.
(iii) In the intervals [µ2m+1, λ2m+1], D(λ) increases from 2 to −2.
(iv) In the intervals (−∞, λ0) and (λ2m+1, λ2m+2), D(λ) > 2.
(v) In the intervals (µ2m, µ2m+1), D(λ) < 2. 14

The above theorem and definition (2.1) tell us what the stability and
the conditional stability intervals are. The stability intervals are (λ2m, µ2m)
and (µ2m+1, λ2m+1), because here |D(λ)| < 2, and the conditional stability
intervals are the closures of these intervals. The instability intervals are
(−∞, λ0) together with (µ2m, µ2m+1) (λ2m+1, λ2m+2). However we omit any
interval which is absent because D(λ) ± 2 has a double zero. The stability
intervals are never absent, nor is the zero-th instability interval (−∞, λ0).
The absence of instability intervals means that there is a value of λ for which
all solutions of (2.1) have either period or semi-period a. This means that
coexistence of solutions of (2.1) with period a or semi-period a occurs for
that value of λ.

2.4 The Mathieu equation

In this section we study the equation in which no interval of instability can
ever disappear, the Mathieu 15 equation. It is given by

y′′(x) + (λ− 2qcos2x)y(x) = 0 (2.16)

where q is non-zero real constant. Only in the case when q = 0, so when
this equation is reduced to the example (2.6) from the section (2.2), only
the zeroth interval of instability remains. So we ignore this case. The above
equation is a particular form of (2.1) where the period a = π.

14For proof of this theorem, look [3], section 2.3. For more information on this prob-
lematic look up [5], Chapter 2, [4], section 10.8, [1], chapter 8.3 etc.

15For the biography of Emile Mathieu, look at section (2.5.3)
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Theorem 2.9 For no values of λ and q, (q 6= 0) do the solutions of the
Mathieu equation (2.16) all have either period π or semi-period π.

The proof of this theorem is done by contradiction.16. This theorem shows
that coexistence does not occur for solutions of period π or semi-period π.
As we have seen at the end of the last section, this implies that no instability
interval of (2.16) is absent.

2.5 Additional information

2.5.1 The adjoint operator and Green’s formula

In section 2.2, we left out a few formulae, so here they are for reference 17.
We are using the notation of this chapter. If ar(x) is in C(2−r)[0, a] where
(r = 1, 2), the adjoint operator exists and it is given by the formula

L∗ =
d2

dx2
a0(x)−

d

dx
a1(x) + a2(x)

And in this case the Green’s formula holds:
∫ a

0

f2(x)Lf1(x)dx−
∫ a

0

f1(x)L∗f2(x)dx = [f1, f2](b)− [f1, f2](a)

where

[f1, f2](x) = f ′
1(x)a0(x)f2(x)− f1(x){a0(x)f2(x)}′ + f1(x)a1(x)f2(x)

2.5.2 Infinite determinant

This topic is too not closely related to the purpose of this paper, but because
it is probably the most groundbreaking work of Hill, let us just quickly men-
tion it. Also, it gives us insight into why we were doing all that theory in
the introductory chapter, and it is definitely interesting. In 1886, Hill used
infinite determinants in order to investigate the characteristic values of λ in
(2.1). Then in 1927, Whittaker and Watson showed that the value of Hill’s
infinite determinant can be expressed in terms of D(λ). In this section we
will briefly see the results of Hill and Watson, in order to understand the
background of all this work 18.
We shall write the determinant in the form

||an,m||lk
16 It can be found in Eastham [3], section 2.5. For more information on this problem

look up [4], section 7.41, pages 177-178
17Also refer Eastham [2], section 5.3 and Coddington [1], Chapter 7, section 2
18For more thorough description of this work, refer to Magnus [5], section 2.3
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where n andm vary over all of the integers between k and l. In particular,
we are interested at determinants where k = −∞ and l = ∞, or where k = 0
and l = ∞. We say that a determinant is of Hill’s type if it satisfies the
condition

∑

n,m

|an,m − δn,m| <∞

where δn,m = 1 for n = m and δn,m = 0 otherwise, and where the sum
is take over all the values of n and m. We can easily see that all finite de-
terminants are of Hill’s type. The first result that we must mention is the
fact that an infinite determinant of Hill’s type converges. Since we are only
interested in some of this work and not too closely, the proofs are omitted 19.

Let us now express the discriminant D(λ) of Hill’s equation (2.1) in terms
of the infinite determinant. Let us firstly express (2.1) in the form

y′′ +

(

∞
∑

n=−∞

gne
2inx

)

y = 0

where λ = g0 andQ(x) is given by the Fourier expansionQ(x) =
∑∞

n=−∞ gne
2inx.

Now we can state the theorem which expresses the discriminant in terms of
the Hill determinant.

Theorem 2.10 The discriminant D(λ) of the Hill’s equation (2.1) can be
expressed in two ways as an infinite determinant involving the Fourier co-
efficients gn of Q(x) (which are normalized so that g0 = 0 and g−n = gn),
namely with

d0(λ) = ‖ gn−m

λ− 4n2
+ δn,m‖

and
d1(λ) = ‖ gn−m

λ− (2n+ 1)2
+ δn,m‖

we have:
2−D(λ) = 4sin2

(π

2

√
λ
)

d0(λ)

2 +D(λ) = 4cos2
(π

2

√
λ
)

d1(λ)

19 Refer Magnus [5], section 2.3
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2.5.3 Mathieu’s Biography

Emile Mathieu was born on 15 May 1835 in Metz, France and he died on 19
Oct 1890 in Nancy, France. He is remembered especially for his discovery
(in 1860 and 1873) of five sporadic simple groups named after him. These
were studied in his thesis on transitive functions. Mathieu was brought up
in Metz, and he attended school in that town. He excelled at school, first in
classical studies showing remarkable abilities in Latin and Greek. However,
once he had met mathematics when he was in his teenage years, it became
the only subject which he wanted to pursue. Entering the Ecole Polytech-
nique in Paris his progress was almost unbelievable. It took Mathieu only
eighteen months to complete the whole course and he continued to study for
a doctorate. By 1859 he had been awarded his Docteur es Sciences for a
thesis on transitive functions, the work which led to his initial discovery of
sporadic simple groups.

Mathieu’s main work, after his initial interest in pure mathematics, was
in mathematical physics although he did do some important work on the
hypergeometric function. From his late twenties his main efforts were de-
voted to the then unfashionable continuation of the great French tradition of
mathematical physics, and he extended in sophistication the formation and
solution of partial differential equations for a wide range of physical prob-
lems. Some of his earliest work in mathematical physics was related to his
study of light and he looked at the surfaces of vibrations arising from Fresnel
waves. He also worked on the polarisation of light where he highlighted some
weaknesses in Cauchy’s results on the topic. He worked on potential theory
applied to elasticity, heat diffusion, and the vibration of bells, a very hard
problem. Mathieu studied fluids, in particular examining capillary forces.
He also studied magnetic induction and the three body problem where he
applied his work to the perturbations of Jupiter and Saturn.

In addition to being remembered for the Mathieu groups, he is also re-
membered for the Mathieu functions. He discovered these functions, which
are special cases of hypergeometric functions, while solving the wave equation
for an elliptical membrane moving through a fluid. The Mathieu functions
are solutions of the Mathieu equation.
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3 Differential Operator Theory

In this final section of this paper we consider the theory of differential oper-
ators, with connection to the Hill’s equation (2.1), we consider the spectral
theory of self-adjoint operators and the gaps in the spectrum, and their
lengths and then we finish off with the calculation of least eigenvalues. It is
a section where we are going to capitalize on everything we were doing thus
far.

3.1 Differential operators

In this section we are going to be looking at some applications of the theory
of symmetric and self-adjoint operators in a Hilbert space to some differential
operators which are in connection to the Hill’s equation (2.1) from section 2.
Let us denote by H the Hilbert space which consists of such complex valued
functions, such that

∫ ∞

−∞
|f(x)|2s(x)dx

takes a finite value. We define the inner product on H similarly to that
from section (2.2), except that we now integrate over the interval (−∞,∞).
It is given by the formula

< f1, f2 >=

∫ ∞

−∞
f1(x)f2(x)s(x)dx.

Now we can rewrite Hill’s equation (2.1) in the form

ly(x) = λy(x)

where l is the differential operator given by the formula

l =
1

s(x)

(

− d

dx
p(x)

d

dx
+ q(x)

)

.

It is our immediate aim to show how l generates a self-adjoint operator
in H . Let us now define D0 to be the linear manifold of functions f in
H which have compact support and an absolutely continuous derivative in
(−∞,∞) such that lf(x) is in the Hilbert space H . So now we can introduce
a symmetric differential operator L0 with domain D0 generated by l as follows

L0f(x) = lf(x) =
1

s(x)

(

− (p(x)f ′(x))
′
+ q(x)f(x)

)

.
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Let now f and g be in D0. Then taking the inner product and integrating
it by parts twice we get that since p(x) and q(x) are real-valued

< L0f, g > =

∫ ∞

−infty

(

− (p(x)f ′(x))
′
+ q(x)f(x)

)

g(x)dx

=

∫ ∞

−∞
f(x)

(

−
(

p(x)g′(x)
)′

+ q(x)g(x)

)

dx

= < f, L0g >

Now we need to determine what the adjoint L∗
0 is, because we know it

exists by the denseness of L0 in H . We now need to introduce a second
differential operator generated by l in H . Let D be the linear manifold
of functions f in H such that f ′(x) exists and is absolutely continuous in
(−∞,∞) and lf(x) is in H . Now define L to be the operator with domain
D as

Lf(x) = lf(x).

Now we can formulate the theorem which finds us the adjoint operator
of L0.

Theorem 3.1 The operator L is the adjoint of L0.

Let us just sketch the proof 20. The domain D0
2 of L0

∗ consists of all the
functions g in H such that

< L0f, g >=< f, g∗ > (3.1)

for all f in D0 and some g∗ in H . Since D0 is dense in H , g∗ is uniquely
determined by g and by definition L0

∗g = g∗. In the same way as was done
above, we have that < L0f, g >=< f, Lg > for all f in D0 and g in D. If we
look at this result and the equation (3.1), we can see that g is in D0

∗ and
L0

∗g = Lg. So L0
∗ is an extension of L. The proof is completed by showing

the opposite, namely that L is an extension of L0
∗. But this calculation is

too lengthy to be shown, so we end the proof here.

Now that we have determined L0
∗, we can calculate the number of linearly

independent functions f in D0
∗ such that

L0
∗f = λf

20 For the full proof, look at Eastham [3], section 5.1
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for im λ > 0 and im λ < 0. Since L0
∗ = L, the above equation gives us

that

(p(x)f ′(x))
′
+ (λs(x)− q(x)) f(x) = 0,

where f is in D. Now the above result shows us that f ′′(x) is piecewise
continuous. Hence, by the results of part (6) in section 1.2 (the one dealing
with complex values of the discriminant), we get that all the non-trivial
solutions f(x) are not in H , so the set of linearly independent functions f in
D0

∗ is empty.
We can now conclude that L0 has a unique self-adjoint extension, which is its
closure L0. Then since L0

∗ = L0
∗ = L0, by theorem (3.1) L = L0

∗. Hence, L
is a self-adjoint operator and it is the unique self-adjoint extension of L0.

3.2 Gaps in the essential spectrum

Let A be a self-adjoint linear operator with domain D(A) in a Hilbert space
H and let σ denote the spectrum of A. Let us now define the essential
spectrum of A

Definition 3.2 The essential spectrum σ′ of A is defined to be the set con-
sisting of the limit points of σ.

An eigenvalue of infinite multiplicity is counted as limit point. By defi-
nition, σ′ is a closed set on the real axis, so its complement is open and can
be represented as a union of a countable number of disjoint open intervals
(αk, βk), (k = 0, 1, . . .). These intervals are what is called gaps in the es-
sential spectrum σ′. Let us now give the theorem which tells us something
about the length of these gaps. In it we use the notion of weak convergence
denoted here by →w. From functional analysis we know that fn→wf means
that < fn, g >→< f, g > for all g in H. Remark that in the results that
follow, if σ and σ′ coincide, i.e. A has no eigenvalues with finite multiplic-
ity, then we do not need the notion of weak convergence, and the conditions
containing it may be omitted.

Theorem 3.3 Let (fn) be an infinite sequence in D(A) such that the norm
||fn|| = 1 for all n and fn→w0 as n→ ∞. Then

βk − αk ≤ 2 lim inf
n→∞

||(A− γkI)fn|| (3.2)

where γk is the mid-point of (αk, βk).
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Right away we give the next theorem which follows from the previous
one.

Theorem 3.4 A real number γ is in σ′ if there is an infinite sequence (fn)
in D(A) such that ||fn|| = 1 for all n, fn→w0 and ||(A − γI)fn|| → 0 as
n→ ∞.

For proof of theorem (3.3) please look Eastham [3], section 5.2. The
theorem (3.4) directly follows from the previous theorem and its proof.

3.3 The spectrum of L

Now we come back to our self-adjoint operator from section 3.1, and in this
section we look at its spectrum σ. Let us now recall the conditional stability
intervals of Hill’s equation (2.1) from section 2.1, definition (2.1), and let S
be the set containing all of these intervals. Let us now go onto two results
directly connected to these.

Theorem 3.5 The spectrum σ of L is purely continuous, i.e. L has no
eigenvalues.

Proof. Let us prove this quickly by contradiction. Suppose L has a
real eigenvalue λ, with the corresponding eigenfunction ψ. Then we would
have that Lψ = λψ holds by definition of eigenvalues. So ψ(x) would be a
non-trivial solution of (2.1) such that

∫ ∞

−∞
|ψ(x)|2s(x)dx (3.3)

is finite, by the properties of L. Now let us look at the possible forms of
solutions of (2.1), as given by cases (1)-(5) in section 1.2. Cases (1)-(3) we
discard because ψ(x) cannot have modulus tending to ∞ as x→ ∞. So the
cases remaining to consider are (4) and (5), so we would have that ψ(x+a) =
ρψ(x), where |ρ| = 1. Taking modulus we get that |ψ(x+a)| = |ψ(x)|. With
this we get a contradiction, because (3.3) would not converge, i.e. would not
be finite. So since there is no eigenfunction ψ, there is no eigenvalue λ, hence
the spectrum σ of L is purely continuous.

Theorem 3.6 The spectrum σ of L is identical to the set of all conditional
stability intervals S.
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Proof. This is a lengthy proof, so we give here just a few main points. 21

The proof is done by showing that S ⊂ σ, and then the contrary. Firstly we
suppose that γ ∈ S, and then we use the theorem (3.4) to show that γ ∈ σ
also. Again this is done by looking at cases (3)-(5) from section 1.2. Next we
must define the sequence (fn) ∈ D such that ||(fn)|| = 1 to use in the theorem
(3.4), and as noted before we can ignore the weak convergence condition
because L has no eigenvalues by the previous theorem. Next we have to
prove the last condition of theorem (3.4), which is that ||(L− γI)fn|| → 0 as
n → ∞. After doing this, by theorem (3.4), we have proved that S ⊂ σ. To
prove that σ ⊂ S, we suppose that µ is a real number not in S, and we have
to prove that µ is also not in σ. But we do not do this here.

3.4 The lengths of the gaps in the spectrum σ

It obviously follows from the above theorem that the gaps in the spectrum
σ of L are the instability intervals of the Hill’s equation (2.1), defined in
Definition (2.1). So theorem (3.3) can give us more information on the lengths
of instability intervals.

Theorem 3.7 Let p(x) = s(x) = 1. Then the length of a gap (α, β) in σ
with mid-point γ satisfies the inequality

β − α ≤ 2

(

1

a

∫ a

0

(q(x)− c0)
2 dx

)
1

2

(3.4)

provided that γ ≥ c0, where

c0 =
1

a

∫ a

0

q(x)dx.

Proof. Again we just sketch the main points of the proof. First we define
(fn) similarly the proof of theorem (3.6), using as the normalization constant
bn for making ||fn|| = 1. So by the fact that |fn(x)| ≤ bn we now want to
estimate the norm of (L− γI)fn from above, and we get that

||(L− γI)fn|| ≤ bn

(

2n

∫ a

0

(q(x)− c0(x))
2dx

)
1

2

+ o(1)

The theorem now follows from the fact that bn ∼ (2na)
1

2 as n → ∞ and
from theorem (3.3).

21 The full proof can be found in Eastham [3], page 82.
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Now let us consider that q(x) has complex Fourier series similar to that
of section 2.5.2

∑

cre
2πrxi/a

And hence by the Parseval formula the right hand side of (3.4) becomes

2

(

2
∞
∑

1

|cr|2
)

1

2

(3.5)

The next theorem is an extension of (3.4) and (3.5) 22.

Theorem 3.8 Let p(x) = s(x) = 1. For any integer N ≥ 1, the length of a
gap (α, β) in σ with mid-point γ satisfies

β − α ≤ 2

(

2

∞
∑

N+1

|cr|2
)

1

2

+
2π

a

(

2
∑N

1 r
2|cr|2

γ − c0 − 2
∑N

1 |cr|

)
1

2

(3.6)

provided

γ > c0 + 2

N
∑

1

|cr| (3.7)

We now have two corollaries of this.

Corollary 3.9 Let p(x) = s(x) = 1. Then the length of a gap in σ goes to
zero as the gap recedes to +∞.

Proof. Let ε > 0 be arbitrary. In inequality (3.6), we define N to be
such that the first term on the right is not greater than 1

2
ε. Now let us define

γ0(ε) to be such that when γ = γ0(ε), (3.7) holds and the second term on
the right of (3.6) is not greater than 1

2
ε. Hence (3.6) gives β − α ≤ 2ε for

γ ≥ γ0(ε). Hence the result follows.

Corollary 3.10 Let p(x) = s(x) = 1. Now let q(x) be absolutely continuous
with q′(x) in L2(0, a). Then we have that

β − α ≤ 2π

a

(

2
∑∞

1 r2|cr|2
γ − c0 − 2

∑∞
1 |cr|

)
1

2

(3.8)

with the condition that (3.7) holds with N = ∞.

Proof. By the conditions on q(x) the result follows from (3.6) by letting
N → ∞.

22For proof of theorem (3.8), look up Eastham [3], section 5.4
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3.5 The least eigenvalues

Now in this section we come to the last part of our coverage of the application
of differential operator theory to the study of the equation (2.1). We now
go back to section 2.2 where we dealt with eigenvalue problems of Hill’s
equation, and again as before denote by F the set of all complex-valued
functions f(x) which are continuous in [0, a] and have a piecewise continuous
derivative in [0, a]. Now also recall the Dirichlet integral J(f, g) defined in
equation (2.8) for f and g in F . From the proof of theorem (2.4) 23, we get
that λ0 is equal to

min

(

J(f, f)
∫ a

0
|f(x)|2s(x)dx

)

(3.9)

where the minimum is taken over all non-trivial f(x) in F which sat-
isfy the periodic boundary condition (2.5). Similarly, (3.9) is equal to µ0

if f(x) satisfies the semi-periodic boundary condition (2.7) instead of (2.5).
The minimum is attained when f(x) equals the corresponding eigenfunction
ψ0(x) for the periodic case, i.e. ξ0(x) for the semi-periodic case. Since these
eigenfunctions are real functions, in these cases we can restrict f(x) to the
real values. Let us now consider estimating these eigenvalues.

Theorem 3.11 Let us define constants c and M in the following way

c =

∫ a

0
q(x)dx

∫ a

0
s(x)dx

, M = inf p(xs(x). (3.10)

Then we can estimate λ0 both from below and above in the following way

c− 1

16M

(
∫ a

0

|q(x)− cs(x)|dx
)2

≤ λ0 ≤ c. (3.11)

24

Theorem 3.12 Let q0 and q1 denote the cosine coefficients

qr =
1

a

∫ a

0

q(x)cos(2rπx/a)dx (r = 0, 1)

and similarly for p0, p1, s0 and s1. Then we have that

µ0 ≤
(

π2 p0∓p1
a2

+ q0 ± q1
)

s0 ± s1
(3.12)

where we read all the upper and lower minus and plus signs together.

23Eastham [3], section 2.2, page 23
24 For proof of this theorem look up Eastham [3], section 5.5
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Proof. Using (3.9) by taking f(x) = cos(πx/a) applied to µ0 in the
semi-periodic case. Hence we get

µ0 ≤
π2

a2

∫ a

0
p(x)sin2

(

πx
a

)

dx+
∫ a

0
q(x)cos2

(

πx
a

)

dx
∫ a

0
s(x)cos2

(

πx
a

)

dx

Now if we express sin2(πx/a) and cos2(πx/a) in terms of cos(2πx/a), we
get the required result with with the upper signs. To obtain it with lower
signs, we just take f(x) = sin(πx/a).

3.6 Additional information

In this last additional information section we show how this theory can be
taken out of the context of ordinary differential equations, and applied to
the multidimensional case, using Schrodinger’s equation. Although Erwin
Schrodinger did not play a great role in the matter we covered, he was such
an exeptional scientist that his biography deserves to appear in this section
as well.

3.6.1 The periodic Schrodinger equation

This is a topic where we talk about the Schrodinger equation 25, and show its
connection with the theory of Hill’s equation (2.1) from previous chapters.
However, we do not delve deeply into this problematic, but we mention it for
its importance. We define the Schrodinger equation by

∆ψ(x) + (λ− q(x))ψ(x) = 0 (3.13)

holding in the whole N - dimensional space EN (N > 1). Here x denotes
a vector in EN , ∆ is the Laplace operator, λ a real parameter and q(x) is
real-valued and periodic. What this means in an N -dimensional space is that
there are N linearly independent vectors aj in EN such that q(x+aj) = q(x).
The Laplace operator is defined in the standard way

∆ =
∂2

∂x12
+ . . .+

∂2

∂xN 2
.

Now a large amount of results concerning equation (2.1) depend upon
Floquet theory and the investigation of the discriminant D(λ) in sections 1

25 For more information on Scrodinger, see section 3.6.2
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Figure 2: E. R. J. Schrodinger (1887-1961)

and 2, i.e. rely on investigation of ordinary differential equations. In a multi-
dimensional case we deal with partial differential equations. However, quite
a few results for equation (2.1) can be proved by using different methods,
which do not use Floquet theory and D(λ) which apply to equation (3.13) as
well. Most important of these are the eigenvalue problems, periodic and k -
periodic, the variational results based on the Dirichlet integral, most of the
differential operator theory, including self-adjoint problem and the spectral
theory, and also the existence of conditional stability intervals for (3.13) can
be established. However, this is beyond the scope of this paper, and we leave
it at that 26.

3.6.2 Schrodinger’s biography

Erwin Rudolf Josef Alexander Schrodinger (Figure 2) was born on 12th of
August 1887 in Erdberg, Vienna, Austria and he died on 4th January 1961
in Vienna, Austria. Schrodinger entered the University of Vienna in 1906.
On 20 May 1910, Schrodinger was awarded his doctorate with a doctoral
dissertation ’On the conduction of electricity on the surface of insulators
in moist air’. Then he was appointed to an assistantship at Vienna but,
rather surprisingly, in experimental physics rather than theoretical physics.
In 1914 Schrodinger’s first important paper was published developing ideas
of Boltzmann. However, with the outbreak of World War I, Schrodinger re-
ceived orders to take up duty on the Italian border. In the spring of 1917
Schrodinger was sent back to Vienna, assigned to teach a course in meteo-
rology. He was able to continue research and he published his first results
on quantum theory. After the end of the war he continued working at Vi-
enna. From 1918 to 1920 he made substantial contributions to colour theory.
Schrodinger had worked at Vienna on radioactivity, proving the statistical

26 Refer to Eastham [3], section 6 for coverage of the periodic Schrodinger equation
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nature of radioactive decay. He had also made important contributions to
the kinetic theory of solids, studying the dynamics of crystal lattices.
From 1921 he studied atomic structure. Then in 1924 he began to study
quantum statistics, and soon after this he read de Broglie’s thesis which
was to have a major influence on his thinking. Schrodinger published his
revolutionary work relating to wave mechanics and the general theory of rel-
ativity in a series of six papers in 1926. Wave mechanics, as proposed by
Schrodinger in these papers, was the second formulation of quantum theory,
the first being matrix mechanics due to Heisenberg. He took up the post of
Planck’s chair in Berlin on 1 October 1927 and there he became a colleague
of Einstein’s. Schrodinger decided in 1933 that he could not live in a country
in which persecution of Jews had become a national policy. On 4 November
1933 Schrodinger arrived in Oxford.
Soon after he arrived in Oxford, Schrodinger heard that, for his work on wave
mechanics, he had been awarded the Nobel prize. In 1935 Schrodinger pub-
lished a three-part essay on ’The present situation in quantum mechanics’
in which his famous Schrodinger’s cat paradox appears. This was a thought
experiment where a cat in a closed box either lived or died according to
whether a quantum event occurred. The paradox was that both universes,
one with a dead cat and one with a live one, seemed to exist in parallel until
an observer opened the box.
He received an offer from the University of Graz and he went to Austria and
spent the years 1936-1938 in Graz. After the Anschluss the Germans occu-
pied Graz and renamed the university Adolf Hitler University. The Nazis
could not forget the insult he had caused them when he fled from Berlin in
1933 and on 26 August 1938 he was dismissed from his post for ’political
unreliability’. He fled quickly to Rome from where he wrote to de Valera as
President of the League of Nations. De Valera offered to arrange a job for
him in Dublin in the new Institute for Advanced Studies he was trying to
set up. From Rome Schrodinger went back to Oxford, and there he received
an offer of a one year visiting professorship at the University of Gent. After
his time in Gent, Schrodinger went to Dublin in the autumn of 1939. There
he studied electromagnetic theory and relativity and began to publish on a
unified field theory. His first paper on this topic was written in 1943. He
remained in Dublin until he retired in 1956 when he returned to Vienna and
wrote his last book Meine Weltansicht (1961) expressing his own metaphys-
ical outlook. During his last few years Schrodinger remained interested in
mathematical physics and continued to work on general relativity, unified
field theory and meson physics.
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3.6.3 Internet availability an some final words

A copy of this dissertation can be downloaded from the website
http://www.maths.vedad.cjb.net directly. Apart from this I will continue
to put some additional information concerning this area of mathematics, so
come back soon to this website! With this final note, we finish this paper
and hope that it gave you enough information on this topic, and that you
found it useful. This is a very interesing and useful part of mathematics, so I
hope reading about it was as interesting for you as it was for me. Until next
time.
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