Structure of presentation

- Metric – affine gravity: The results of previous joint work.
- Physical interpretation of these results.
- Future work for my PhD: The spectrum of the massless Dirac operator.
- Discussion.
Alternative theory of gravity.

Natural generalization of Einstein’s GR, which is based on a spacetime with Riemannian metric g of Lorentzian signature.

We consider spacetime to be a connected real 4-manifold M equipped with Lorentzian metric g and an affine connection Γ.

$$\text{SPACETIME MAG} = \{M, g, \Gamma\}$$

The 10 independent components of the symmetric metric tensor $g_{\mu\nu}$ and 64 connection coefficients $\Gamma^\lambda_{\mu\nu}$ are unknowns of MAG.
Alternative theory of gravity.

Natural generalization of Einstein’s GR, which is based on a spacetime with Riemannian metric g of Lorentzian signature.

We consider spacetime to be a connected real 4-manifold M equipped with Lorentzian metric g and an affine connection Γ.

$\text{SPACETIME MAG = } \{M, g, \Gamma\}$

The 10 independent components of the symmetric metric tensor $g_{\mu\nu}$ and 64 connection coefficients $\Gamma^\lambda_{\mu\nu}$ are unknowns of MAG.
Alternative theory of gravity.

Natural generalization of Einstein’s GR, which is based on a spacetime with Riemannian metric \(g \) of Lorentzian signature.

We consider spacetime to be a connected real 4-manifold \(M \) equipped with Lorentzian metric \(g \) and an affine connection \(\Gamma \).

\[
\text{SPACETIME MAG} = \{ M, g, \Gamma \}
\]

The 10 independent components of the symmetric metric tensor \(g_{\mu\nu} \) and 64 connection coefficients \(\Gamma^\lambda_{\mu\nu} \) are unknowns of MAG.
We define our action as

\[S := \int q(R) \] \hspace{1cm} (1)\]

where \(q(R) \) is a quadratic form on curvature \(R \).

The system of Euler–Lagrange equations:

\[\frac{\partial S}{\partial g} = 0, \] \hspace{1cm} (2)\]

\[\frac{\partial S}{\partial \Gamma} = 0. \] \hspace{1cm} (3)\]

Objective: To study the combined system of field equations (2), (3) which is system of 10+64 real nonlinear PDEs with 10+64 real unknowns.
Metric – affine gravity

We define our action as

\[S := \int q(R) \] \hspace{1cm} (1) \]

where \(q(R) \) is a quadratic form on curvature \(R \).

The system of Euler–Lagrange equations:

\[\frac{\partial S}{\partial g} = 0, \] \hspace{1cm} (2) \]

\[\frac{\partial S}{\partial \Gamma} = 0. \] \hspace{1cm} (3) \]

Objective: To study the combined system of field equations (2), (3) which is system of \(10+64 \) real nonlinear PDEs with \(10+64 \) real unknowns.
We define our action as

\[S := \int q(R) \]

where \(q(R) \) is a quadratic form on curvature \(R \).

The system of Euler – Lagrange equations:

\[\frac{\partial S}{\partial g} = 0, \]

\[\frac{\partial S}{\partial \Gamma} = 0. \]

Objective: To study the combined system of field equations (2), (3) which is \textit{system of 10+64 real nonlinear PDEs with 10+64 real unknowns}.
We write down explicitly our field equations (2), (3) under following assumptions:

(i) our spacetime is metric compatible,
(ii) curvature has symmetries

\[R_{\kappa\lambda\mu\nu} = R_{\mu\nu\kappa\lambda}, \quad \varepsilon_{\kappa\lambda\mu\nu} R_{\kappa\lambda\mu\nu} = 0, \]

(iii) scalar curvature is zero.
We write down explicitly our field equations (2), (3) under following assumptions:

(i) our spacetime is metric compatible,

(ii) curvature has symmetries

\[R_{\kappa\lambda\mu\nu} = R_{\mu\nu\kappa\lambda}, \quad \varepsilon^{\kappa\lambda\mu\nu} R_{\kappa\lambda\mu\nu} = 0, \]

(iii) scalar curvature is zero.
The main result is

Lemma

Under the above assumptions (i) – (iii), the field equations (2), (3) are

\[
0 = d_1 \mathcal{W}^{\kappa\lambda\mu\nu} \text{Ric}_{\kappa\mu} + d_3 \left(\text{Ric}^\lambda_{\kappa\nu} \text{Ric}_{\kappa\mu} - \frac{1}{4} g_{\lambda\nu} \text{Ric}_{\kappa\mu} \text{Ric}^{\kappa\mu} \right) \tag{4}
\]
Main result so far

The main result is

Lemma

Under the above assumptions (i) – (iii), the field equations (2), (3) are

\[0 = d_1 \mathcal{V}^{\kappa\lambda\mu\nu} R_{\kappa\mu} + d_3 \left(R_{\lambda}^{\kappa} R_{\kappa}^{\nu} - \frac{1}{4} g^{\lambda\nu} R_{\kappa\mu} R_{\kappa\mu} \right) \]
New representation of the field equations

\[0 = d_6 \nabla_\lambda \text{Ric}_{\kappa \mu} - d_7 \nabla_\kappa \text{Ric}_\lambda \mu \\
+ d_6 \left(\text{Ric}_\kappa \eta (K_{\mu \eta \lambda} - K_{\mu \lambda \eta}) + \frac{1}{2} g_{\lambda \mu} \mathcal{W}^{\eta \zeta}_{\kappa \xi} (K^{\xi}_{\eta \zeta} - K^{\xi}_{\zeta \eta}) + \frac{1}{2} g_{\mu \lambda} \text{Ric}_\xi \eta K^{\xi}_{\eta \kappa} \\
+ g_{\mu \lambda} \text{Ric}_\kappa \eta K^{\xi}_{\xi \eta} - K^{\xi}_{\xi \lambda} \text{Ric}_{\kappa \mu} + \frac{1}{2} g_{\mu \kappa} \text{Ric}_\xi \xi (K^{\eta}_{\xi \eta} - K^{\eta}_{\eta \xi}) \right) \\
- d_7 \left(\text{Ric}_\lambda \eta (K_{\mu \eta \kappa} - K_{\mu \kappa \eta}) + \frac{1}{2} g_{\kappa \mu} \mathcal{W}^{\kappa \zeta}_{\lambda \xi} (K^{\xi}_{\eta \zeta} - K^{\xi}_{\zeta \eta}) + \frac{1}{2} g_{\mu \kappa} \text{Ric}_\xi \eta K^{\xi}_{\eta \lambda} \\
+ g_{\kappa \mu} \text{Ric}_\lambda \eta K^{\xi}_{\xi \eta} - K^{\xi}_{\xi \kappa} \text{Ric}_\lambda \mu + \frac{1}{2} g_{\mu \kappa} \text{Ric}_\lambda \xi (K^{\eta}_{\xi \eta} - K^{\eta}_{\eta \xi}) \right) \\
+ b_{10} \left(g_{\mu \lambda} \mathcal{W}^{\eta \zeta}_{\kappa \xi} (K^{\xi}_{\zeta \eta} - K^{\xi}_{\eta \zeta}) + g_{\mu \kappa} \mathcal{W}^{\eta \zeta}_{\lambda \xi} (K^{\xi}_{\eta \zeta} - K^{\xi}_{\zeta \eta}) \\
+ g_{\mu \lambda} \text{Ric}_\kappa \xi (K^{\eta}_{\eta \xi} - K^{\eta}_{\xi \eta}) + g_{\mu \kappa} \text{Ric}_\xi \xi (K^{\eta}_{\xi \eta} - K^{\eta}_{\eta \xi}) \\
+ g_{\kappa \mu} \text{Ric}_\lambda \eta K^{\xi}_{\xi \eta} - g_{\lambda \mu} \text{Ric}_\kappa \eta K^{\xi}_{\xi \eta} + \text{Ric}_{\mu \kappa} K^{\eta}_{\lambda \eta} - \text{Ric}_{\mu \lambda} K^{\eta}_{\kappa \eta} \right) \\
+ 2b_{10} \left(\mathcal{W}^{\eta \zeta}_{\mu \kappa \xi} (K^{\xi}_{\eta \lambda} - K^{\xi}_{\lambda \eta}) + \mathcal{W}^{\eta \zeta}_{\mu \lambda \xi} (K^{\xi}_{\kappa \eta} - K^{\xi}_{\eta \kappa}) \\
- K_{\mu \xi \eta} \mathcal{W}^{\eta \zeta}_{\kappa \lambda} - K^{\xi}_{\xi \eta} \mathcal{W}^{\eta \zeta}_{\mu \lambda \kappa} \right) \]

where \(d_1, d_3, d_6, d_7, b_{10} \) are some real constants.
The first task

We are going to try to generalize pp–waves as follows

Conjecture

There exists a new class of spacetimes with pp–metric and purely axial torsion which are solutions of the field equations (2), (3).

Expectations:

- to prove or disprove conjecture above.
- to give a physical interpretation of the new solutions and compare them with existing Riemannian solutions.
We are going to try to generalize pp–waves as follows

Conjecture

There exists a new class of spacetimes with pp–metric and purely axial torsion which are solutions of the field equations (2), (3).

Expectations:

- to prove or disprove conjecture above.
- to give a physical interpretation of the new solutions and compare them with existing Riemannian solutions.
The first task

We are going to try to generalize pp–waves as follows

Conjecture

There exists a new class of spacetimes with pp–metric and purely axial torsion which are solutions of the field equations (2), (3).

Expectations:

- to prove or disprove conjecture above.
- to give a physical interpretation of the new solutions and compare them with existing Riemannian solutions.
Massless Dirac action:

\[S_{\text{neutrino}} := 2i \int \left(\xi^a \sigma^\mu_{ab} (\nabla_\mu \bar{\xi}^b) - (\nabla_\mu \xi^a) \sigma^\mu_{ab} \bar{\xi}^b \right). \]

In Einstein–Weyl theory the action is given by:

\[S_{\text{EW}} = S_{\text{neutrino}} + k \int \mathcal{R}. \]

We obtain the well known Einstein–Weyl field equations

\[\frac{\partial S_{\text{EW}}}{\partial g} = 0, \quad (6) \]
\[\frac{\partial S_{\text{EW}}}{\partial \xi} = 0. \quad (7) \]
Massless Dirac action:

\[S_{\text{neutrino}} := 2i \int \left(\xi^a \sigma^\mu_{ab} (\nabla_\mu \bar{\xi}^b) - (\nabla_\mu \xi^a) \sigma^\mu_{ab} \bar{\xi}^b \right). \]

In Einstein–Weyl theory the action is given by:

\[S_{\text{EW}} = S_{\text{neutrino}} + k \int \mathcal{R}. \]

We obtain the well known Einstein–Weyl field equations

\[\frac{\partial S_{\text{EW}}}{\partial g} = 0, \quad (6) \]
\[\frac{\partial S_{\text{EW}}}{\partial \xi} = 0. \quad (7) \]
Physical interpretation

Massless Dirac action:

\[S_{\text{neutrino}} := 2i \int \left(\xi^a \sigma^\mu_{ab} (\nabla_\mu \xi^b) - (\nabla_\mu \xi^a) \sigma^\mu_{ab} \xi^b \right). \]

In Einstein–Weyl theory the action is given by:

\[S_{\text{EW}} = S_{\text{neutrino}} + k \int \mathcal{R}. \]

We obtain the well known Einstein–Weyl field equations

\[\frac{\partial S_{\text{EW}}}{\partial g} = 0, \quad \frac{\partial S_{\text{EW}}}{\partial \xi} = 0. \]
The massless Dirac operator is the matrix operator

\[W = -i \sigma^\alpha \left(\frac{\partial}{\partial x^\alpha} + \frac{1}{4} \sigma_\beta \left(\frac{\partial \sigma^\beta}{\partial x^\alpha} + \left\{ \beta \atop \alpha \gamma \right\} \sigma^\gamma \right) \right). \]

The massless Dirac operator (8) describes a single massless neutrino living in 3-dimensional compact universe \(M \).

The eigenvalues of the massless Dirac operator are the energy levels.
The massless Dirac operator is the matrix operator

$$W = -i\sigma^\alpha \left(\frac{\partial}{\partial x^\alpha} + \frac{1}{4} \sigma^\beta \left(\frac{\partial \sigma^\beta}{\partial x^\alpha} + \left\{ \beta_{\alpha\gamma} \right\} \sigma^\gamma \right) \right). \quad (8)$$

The massless Dirac operator (8) describes a single massless neutrino living in 3-dimensional compact universe M.

The eigenvalues of the massless Dirac operator are the energy levels.
Let M be a 3-dimensional connected oriented manifold equipped with a Riemannian metric $g_{\alpha\beta}$ and let W be the corresponding massless Dirac operator (8).

Two basic examples when the spectrum of W can be calculated explicitly:

- the unit torus \mathbb{T}^3 equipped with Euclidean metric.
- the unit sphere S^3 equipped with metric induced by the natural embedding of S^3 in Euclidean space \mathbb{R}^4.

In both examples the spectrum turns out to be symmetric about zero.
Let M be a 3-dimensional connected oriented manifold equipped with a Riemnnian metric $g_{\alpha\beta}$ and let W be the corresponding massless Dirac operator (8).

Two basic examples when the spectrum of W can be calculated explicitly:

- the unit torus \mathbb{T}^3 equipped with Euclidean metric.
- the unit sphere \mathbb{S}^3 equipped with metric induced by the natural embedding of \mathbb{S}^3 in Euclidean space \mathbb{R}^4.

In both examples the spectrum turns out to be symmetric about zero.
Physically, this means that in these two examples there is no difference between the properties of the particle (massless neutrino) and antiparticle (massless antineutrino).

For a general oriented Riemannian 3-manifold there is no reason for the spectrum of massless Dirac operator W to be symmetric (M. F. Atiyah, V. K. Patodi and I. M. Singer).

Producing explicit examples of spectral asymmetry is a very difficult task.
Physically, this means that in these two examples there is no difference between the properties of the particle (massless neutrino) and antiparticle (massless antineutrino).

For a general oriented Riemannian 3-manifold there is no reason for the spectrum of massless Dirac operator W to be symmetric (M. F. Atiyah, V. K. Patodi and I. M. Singer).

Producing explicit examples of spectral asymmetry is a very difficult task.
Physically, this means that in these two examples there is no difference between the properties of the particle (massless neutrino) and antiparticle (massless antineutrino).

For a general oriented Riemannian 3-manifold there is no reason for the spectrum of massless Dirac operator W to be symmetric (M. F. Atiyah, V. K. Patodi and I. M. Singer).

Producing explicit examples of spectral asymmetry is a very difficult task.
Pfäffle: the example based on the idea of choosing a 3-manifold with flat metric but highly nontrivial topology!

Barakovic, Pasic, Vassiliev: the simplest possible topology and construct an explicit example of spectral asymmetry by perturbing the metric!

Pfäffle: the example based on the idea of choosing a 3-manifold with flat metric but highly nontrivial topology!

Barakovic, Pasic, Vassiliev: the simplest possible topology and construct an explicit example of spectral asymmetry by perturbing the metric!

Pfäffle: the example based on the idea of choosing a 3-manifold with flat metric but highly nontrivial topology!

Barakovic, Pasic, Vassiliev: the simplest possible topology and construct an explicit example of spectral asymmetry by perturbing the metric!

The plan

Try to achieve the spectral asymmetry of the massless Dirac operator (8) on the unit sphere S^3.

The ideas: the metric which depends on small parameter ε, Hopf fibration.
The plan

Try to achieve the spectral asymmetry of the massless Dirac operator (8) on the unit sphere S^3.

The ideas: the metric which depends to small parameter ε, Hopf fibration.
Welcome to Tuzla!