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Axial Torsion Waves

A spacetime with pp-metric and torsion

T := ∗A (1)

where A is a real vector field defined by A = k(ϕ)l .
(V. Pasic and E. Barakovic: “Torsion wave solutions in
Yang-Mielke theory of gravity”, Advances in High Energy Physics,
accepted for publication. )

The torsion T is purely axial and the connection Γ is metric
compatible.



The remarkable property: the curvature of a generalised pp-wave is
a sum of the curvature of the underlying classical pp-space
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generated by a axial torsion wave traveling over the pp-space.
Ricci curvature is

Ric =
1
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(
f11 + f22 − k2

)
(l ⊗ l). (4)

and scalar curvature R is equal to zero.



Our goal: to compare the generalised pp-waves with purely axial
torsion to the solutions of the classical models describing the
interaction of gravitational and massless neutrino fields ( EW
theory).

Our torsion and torsion generated curvature can be interpreted as
waves traveling at speed of light.

The underlying classical pp-space of parallel Ricci curvature can
then be viewed as the gravitational imprint created by a wave of
some massless matter field.



We deal with the complexified curvature R := r (l ∧m)⊗ (l ∧m),
where r := 1

4k
2 − i

2k
′, hence RT = Re(R). The curvature R is

polarized, i.e. ∗R = R∗ = ±iR, and it wan be written as

Rαβγδ = σαβab ω
abcd σγδcd (5)

Resolving (5) with respect to ω yields

ω = ξ ⊗ ξ ⊗ ξ ⊗ ξ

where
ξ := r1/4 χ (6)

and χa = (1, 0).

The spinor (6) satisfies Weyl’s (the massless Dirac) equation.



Einstein–Weyl field equation

We consider the action as

SEW := 2i
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The explicit representation of the Einstein–Weyl field equations is
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σµaḃ{∇}µ ξ
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The system (8), (9) has the solutions in the form of pp-waves.



Comparison of metric–affine and Einstein–Weyl solutions

We wish to present a class of explicit solutions of EW field equations where the
metric g is in the form of a pp-metric and the spinor ξ = r1/4ξ.

The condition that a pp-wave needs to satisfy to be a solution of Einstein–Weyl is

f11 + f22 = k(x3)2 +
2i

K

(
(r1/4)′ r1/4 − r1/4 (r1/4)′

)
, (10)

The differences:
MA case: the generalised pp-wave solutions have parallel {Ric} curvature
EW case: the pp-wave type solutions do not necessarily have parallel Ricci curvature.

MA case: Laplacian of f can be any constant,
EW case: Laplacian of f required to be a particular constant.



Physical interpretation

The generalised pp-waves of parallel Ricci curvature are very
similar to pp-type solutions of the Einstein–Weyl model.

The generalised pp-waves represent a metric-affine model for the
massless neutrino.
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